Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus.

Identifieur interne : 001015 ( Main/Exploration ); précédent : 001014; suivant : 001016

Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus.

Auteurs : Xiaopeng Wu [République populaire de Chine] ; Hailong Wang ; Lu Bai ; Yang Yu ; Zeyu Sun ; Yan Yan ; Jiyong Zhou

Source :

RBID : pubmed:23856606

Descripteurs français

English descriptors

Abstract

UNLABELLED

Swine influenza viruses (SIV) are zoonotic pathogens that pose a potential threat to human health. In this study, we analyzed the differential mitochondrial proteomes of H3N2 SIV-infected human lung A549 cells using two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) analysis. In the comparative analysis, 24 altered proteins (13 upregulated and 11 downregulated) were identified in the mitochondria of H3N2 SIV-infected cells; these proteins were involved in cell-to-cell signaling and interaction, cellular movement, and post-translational modification. Moreover, the transcriptional profiles of 16 genes corresponding to the identified proteins were estimated by real time RT-PCR. IPA analysis suggested that the differentially expressed proteins were clustered primarily into the mammalian target of rapamycin (mTOR) and d-glucose signaling pathways. In addition, oxidative phosphorylation and integrin signaling appeared to be major pathways modulated in the mitochondria of infected cells. We further demonstrated that apolipoprotein L2 was upregulated in the cytoplasm and translocated to mitochondria during virus infection. These results were verified by Western blot analysis coupled with confocal microscopy. Collectively, the mitochondrial proteome data provide insights to further understand the underlying mechanisms of H3N2 SIV cross-species infection.

BIOLOGICAL SIGNIFICANCE

In recent years, proteomics has emerged as an indispensable tool to unveil the complex molecular events in virology. we firstly perform mitochondrial proteomic profiles of human cells infected with H3N2 subtype SIV to understand virus-host interactions, and 24 differentially expressed proteins in mitochondrial proteomes were identified in SIV-infected cells. The proteins that were identified to have differential expression were involved in cell-to-cell signaling and interaction, post-translational modification, cell morphology, cellular assembly, cell death, and energy production. Furthermore, Western blot analysis and a confocal assay further demonstrated that the cellular protein APOL2 partially co-localized with mitochondria after virus infection. This is a very important discovery in the underlying replication and pathogenesis of SIV which provides a potential target clue for the design of anti-SIV drugs. Our results will inspire basic study on SIV infection and drive the understanding for replication and pathogenesis of SIV to control this disease.


DOI: 10.1016/j.jprot.2013.06.037
PubMed: 23856606


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus.</title>
<author>
<name sortKey="Wu, Xiaopeng" sort="Wu, Xiaopeng" uniqKey="Wu X" first="Xiaopeng" last="Wu">Xiaopeng Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hailong" sort="Wang, Hailong" uniqKey="Wang H" first="Hailong" last="Wang">Hailong Wang</name>
</author>
<author>
<name sortKey="Bai, Lu" sort="Bai, Lu" uniqKey="Bai L" first="Lu" last="Bai">Lu Bai</name>
</author>
<author>
<name sortKey="Yu, Yang" sort="Yu, Yang" uniqKey="Yu Y" first="Yang" last="Yu">Yang Yu</name>
</author>
<author>
<name sortKey="Sun, Zeyu" sort="Sun, Zeyu" uniqKey="Sun Z" first="Zeyu" last="Sun">Zeyu Sun</name>
</author>
<author>
<name sortKey="Yan, Yan" sort="Yan, Yan" uniqKey="Yan Y" first="Yan" last="Yan">Yan Yan</name>
</author>
<author>
<name sortKey="Zhou, Jiyong" sort="Zhou, Jiyong" uniqKey="Zhou J" first="Jiyong" last="Zhou">Jiyong Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23856606</idno>
<idno type="pmid">23856606</idno>
<idno type="doi">10.1016/j.jprot.2013.06.037</idno>
<idno type="wicri:Area/Main/Corpus">000F89</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F89</idno>
<idno type="wicri:Area/Main/Curation">000F89</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F89</idno>
<idno type="wicri:Area/Main/Exploration">000F89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus.</title>
<author>
<name sortKey="Wu, Xiaopeng" sort="Wu, Xiaopeng" uniqKey="Wu X" first="Xiaopeng" last="Wu">Xiaopeng Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hailong" sort="Wang, Hailong" uniqKey="Wang H" first="Hailong" last="Wang">Hailong Wang</name>
</author>
<author>
<name sortKey="Bai, Lu" sort="Bai, Lu" uniqKey="Bai L" first="Lu" last="Bai">Lu Bai</name>
</author>
<author>
<name sortKey="Yu, Yang" sort="Yu, Yang" uniqKey="Yu Y" first="Yang" last="Yu">Yang Yu</name>
</author>
<author>
<name sortKey="Sun, Zeyu" sort="Sun, Zeyu" uniqKey="Sun Z" first="Zeyu" last="Sun">Zeyu Sun</name>
</author>
<author>
<name sortKey="Yan, Yan" sort="Yan, Yan" uniqKey="Yan Y" first="Yan" last="Yan">Yan Yan</name>
</author>
<author>
<name sortKey="Zhou, Jiyong" sort="Zhou, Jiyong" uniqKey="Zhou J" first="Jiyong" last="Zhou">Jiyong Zhou</name>
</author>
</analytic>
<series>
<title level="j">Journal of proteomics</title>
<idno type="eISSN">1876-7737</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apolipoproteins (metabolism)</term>
<term>Apolipoproteins L (MeSH)</term>
<term>Apoptosis (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cytosol (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Influenza A Virus, H3N2 Subtype (MeSH)</term>
<term>Influenza, Human (metabolism)</term>
<term>Influenza, Human (virology)</term>
<term>Integrins (metabolism)</term>
<term>Lipoproteins, HDL (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondria (virology)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Oxidative Phosphorylation (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Proteomics (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apolipoprotéines (métabolisme)</term>
<term>Apolipoprotéines L (MeSH)</term>
<term>Apoptose (MeSH)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Cytosol (métabolisme)</term>
<term>Grippe humaine (métabolisme)</term>
<term>Grippe humaine (virologie)</term>
<term>Humains (MeSH)</term>
<term>Intégrines (métabolisme)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Lipoprotéines HDL (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Mitochondries (virologie)</term>
<term>Phosphorylation oxydative (MeSH)</term>
<term>Protéomique (MeSH)</term>
<term>Sous-type H3N2 du virus de la grippe A (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Apolipoproteins</term>
<term>Integrins</term>
<term>Lipoproteins, HDL</term>
<term>Molecular Chaperones</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Apolipoproteins L</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Influenza, Human</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Apolipoprotéines</term>
<term>Chaperons moléculaires</term>
<term>Cytosol</term>
<term>Grippe humaine</term>
<term>Intégrines</term>
<term>Lipoprotéines HDL</term>
<term>Mitochondries</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Apoptosis</term>
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Oxidative Phosphorylation</term>
<term>Protein Processing, Post-Translational</term>
<term>Proteomics</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Apolipoprotéines L</term>
<term>Apoptose</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Phosphorylation oxydative</term>
<term>Protéomique</term>
<term>Sous-type H3N2 du virus de la grippe A</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>UNLABELLED</b>
</p>
<p>Swine influenza viruses (SIV) are zoonotic pathogens that pose a potential threat to human health. In this study, we analyzed the differential mitochondrial proteomes of H3N2 SIV-infected human lung A549 cells using two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) analysis. In the comparative analysis, 24 altered proteins (13 upregulated and 11 downregulated) were identified in the mitochondria of H3N2 SIV-infected cells; these proteins were involved in cell-to-cell signaling and interaction, cellular movement, and post-translational modification. Moreover, the transcriptional profiles of 16 genes corresponding to the identified proteins were estimated by real time RT-PCR. IPA analysis suggested that the differentially expressed proteins were clustered primarily into the mammalian target of rapamycin (mTOR) and d-glucose signaling pathways. In addition, oxidative phosphorylation and integrin signaling appeared to be major pathways modulated in the mitochondria of infected cells. We further demonstrated that apolipoprotein L2 was upregulated in the cytoplasm and translocated to mitochondria during virus infection. These results were verified by Western blot analysis coupled with confocal microscopy. Collectively, the mitochondrial proteome data provide insights to further understand the underlying mechanisms of H3N2 SIV cross-species infection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>BIOLOGICAL SIGNIFICANCE</b>
</p>
<p>In recent years, proteomics has emerged as an indispensable tool to unveil the complex molecular events in virology. we firstly perform mitochondrial proteomic profiles of human cells infected with H3N2 subtype SIV to understand virus-host interactions, and 24 differentially expressed proteins in mitochondrial proteomes were identified in SIV-infected cells. The proteins that were identified to have differential expression were involved in cell-to-cell signaling and interaction, post-translational modification, cell morphology, cellular assembly, cell death, and energy production. Furthermore, Western blot analysis and a confocal assay further demonstrated that the cellular protein APOL2 partially co-localized with mitochondria after virus infection. This is a very important discovery in the underlying replication and pathogenesis of SIV which provides a potential target clue for the design of anti-SIV drugs. Our results will inspire basic study on SIV infection and drive the understanding for replication and pathogenesis of SIV to control this disease.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23856606</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1876-7737</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>91</Volume>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Journal of proteomics</Title>
<ISOAbbreviation>J Proteomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus.</ArticleTitle>
<Pagination>
<MedlinePgn>136-50</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jprot.2013.06.037</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1874-3919(13)00386-2</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Swine influenza viruses (SIV) are zoonotic pathogens that pose a potential threat to human health. In this study, we analyzed the differential mitochondrial proteomes of H3N2 SIV-infected human lung A549 cells using two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) analysis. In the comparative analysis, 24 altered proteins (13 upregulated and 11 downregulated) were identified in the mitochondria of H3N2 SIV-infected cells; these proteins were involved in cell-to-cell signaling and interaction, cellular movement, and post-translational modification. Moreover, the transcriptional profiles of 16 genes corresponding to the identified proteins were estimated by real time RT-PCR. IPA analysis suggested that the differentially expressed proteins were clustered primarily into the mammalian target of rapamycin (mTOR) and d-glucose signaling pathways. In addition, oxidative phosphorylation and integrin signaling appeared to be major pathways modulated in the mitochondria of infected cells. We further demonstrated that apolipoprotein L2 was upregulated in the cytoplasm and translocated to mitochondria during virus infection. These results were verified by Western blot analysis coupled with confocal microscopy. Collectively, the mitochondrial proteome data provide insights to further understand the underlying mechanisms of H3N2 SIV cross-species infection.</AbstractText>
<AbstractText Label="BIOLOGICAL SIGNIFICANCE" NlmCategory="UNASSIGNED">In recent years, proteomics has emerged as an indispensable tool to unveil the complex molecular events in virology. we firstly perform mitochondrial proteomic profiles of human cells infected with H3N2 subtype SIV to understand virus-host interactions, and 24 differentially expressed proteins in mitochondrial proteomes were identified in SIV-infected cells. The proteins that were identified to have differential expression were involved in cell-to-cell signaling and interaction, post-translational modification, cell morphology, cellular assembly, cell death, and energy production. Furthermore, Western blot analysis and a confocal assay further demonstrated that the cellular protein APOL2 partially co-localized with mitochondria after virus infection. This is a very important discovery in the underlying replication and pathogenesis of SIV which provides a potential target clue for the design of anti-SIV drugs. Our results will inspire basic study on SIV infection and drive the understanding for replication and pathogenesis of SIV to control this disease.</AbstractText>
<CopyrightInformation>© 2013. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Xiaopeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hailong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Lu</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Zeyu</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Jiyong</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Proteomics</MedlineTA>
<NlmUniqueID>101475056</NlmUniqueID>
<ISSNLinking>1874-3919</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C543112">APOL2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001053">Apolipoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000075943">Apolipoproteins L</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016023">Integrins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008075">Lipoproteins, HDL</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001053" MajorTopicYN="N">Apolipoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000075943" MajorTopicYN="N">Apolipoproteins L</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053122" MajorTopicYN="Y">Influenza A Virus, H3N2 Subtype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016023" MajorTopicYN="N">Integrins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008075" MajorTopicYN="N">Lipoproteins, HDL</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010085" MajorTopicYN="N">Oxidative Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="Y">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">A549 cells</Keyword>
<Keyword MajorTopicYN="N">H3N2 swine influenza virus</Keyword>
<Keyword MajorTopicYN="N">Mitochondrial proteomics</Keyword>
<Keyword MajorTopicYN="N">Translocation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23856606</ArticleId>
<ArticleId IdType="pii">S1874-3919(13)00386-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.jprot.2013.06.037</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
</settlement>
<orgName>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bai, Lu" sort="Bai, Lu" uniqKey="Bai L" first="Lu" last="Bai">Lu Bai</name>
<name sortKey="Sun, Zeyu" sort="Sun, Zeyu" uniqKey="Sun Z" first="Zeyu" last="Sun">Zeyu Sun</name>
<name sortKey="Wang, Hailong" sort="Wang, Hailong" uniqKey="Wang H" first="Hailong" last="Wang">Hailong Wang</name>
<name sortKey="Yan, Yan" sort="Yan, Yan" uniqKey="Yan Y" first="Yan" last="Yan">Yan Yan</name>
<name sortKey="Yu, Yang" sort="Yu, Yang" uniqKey="Yu Y" first="Yang" last="Yu">Yang Yu</name>
<name sortKey="Zhou, Jiyong" sort="Zhou, Jiyong" uniqKey="Zhou J" first="Jiyong" last="Zhou">Jiyong Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Wu, Xiaopeng" sort="Wu, Xiaopeng" uniqKey="Wu X" first="Xiaopeng" last="Wu">Xiaopeng Wu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001015 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001015 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23856606
   |texte=   Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23856606" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020